

Welcome to dicom-wsi’s documentation!

Contents:

	dicom_wsi

	Usage
	Features

	TODO

	Credits

	Installation
	With Conda (Preferred)

	Stable release

	From sources

	With Docker

	Development with PyCharm

	TL;DR

	Getting Started
	Create a YAML file

	Without a YAML file

	Using in existing code

	Sample RUN

	Examples
	Other functions

	Working with iSyntax files

	Annotations
	Getting some sample XML data

	Inserting into the DICOM file

	Extracting Annotations & Images from DICOM Files
	Extract Annotations from DICOM

	Extract Images from Dicom

	Code
	Base Attributes

	Character Validation

	Input Validation

	Mapping Functions

	Whole Slide Image Parsing

	Down-sampling the WSI

	Converting Pixels to Positions

	Adding in Sequence Data

	Adding Functional Groups Data

	Other helper utilities

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2021-1-22)

Indices and tables

	Index

	Module Index

	Search Page

dicom_wsi

[image: _images/dicom_wsi.svg]
 [https://pypi.python.org/pypi/dicom_wsi][image: _images/dicom_wsi1.svg]
 [https://travis-ci.com/Steven-N-Hart/dicom_wsi][image: Documentation Status]
 [https://dicom-wsi.readthedocs.io/en/latest/?badge=latest]

Package for converting whole slide image files to DICOM.

	Free software: MIT license

	Documentation: https://dicom-wsi.readthedocs.io.

Usage

First, you need to install dicom_wsi and its dependencies. See this link [https://dicom-wsi.readthedocs.io/en/latest/installation.html] for details.

To use dicom-wsi:

python cli.py -w <WSI File path> -o <OutputDirectory> -p <output file prefix> -y yaml/base.yaml

That’s it! Most of the time you wan’t need to change anything. But if you do, please see the example yaml [https://github.com/Steven-N-Hart/dicom_wsi/blob/master/dicom_wsi/yaml/base.yaml] file.

Features

	Validate DICOM elements using pydicom [https://pydicom.github.io/]

	Output format DICOM formatted files (vetted with dciodvfy [https://www.dclunie.com/dicom3tools/dciodvfy.html])

TODO

	Find out how to determine what FileMetaInformationGroupLength should be

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Important

The libvips [https://libvips.github.io/libvips/] and OpenSlide [https://openslide.org/download/] packages are required, but not available on PyPi. You will need to make sure your environment has these packages available.

Important

Windows is VERY finicky with OpenSlide [https://openslide.org/download/], and it’s not always straightforward. The recommended way for windows users is through Docker.

With Conda (Preferred)

The preferred method uses miniconda [https://docs.conda.io/en/latest/miniconda.html] because there are several necessary modules that cannot be installed with pip. To
install miniconda [https://docs.conda.io/en/latest/miniconda.html]:

$ sudo apt-get update
$ wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh -O miniconda.sh;
$ bash miniconda.sh -b -p $HOME/miniconda
$ source "$HOME/miniconda/etc/profile.d/conda.sh"
$ hash -r
$ conda config --set always_yes yes --set changeps1 no
$ conda update -q conda

Once conda is installed, then you can install dicom_wsi:

$ conda config --add channels bioconda
$ conda config --add channels conda-forge
$ conda create -q -n test-environment python pyvips openjpeg libtiff
$ conda activate test-environment
$ pip install -U -r requirements_dev.txt

If using iSyntax files, you also need libtiff
http://download.osgeo.org/libtiff/tiff-4.1.0.zip

Stable release

To install dicom-wsi, run this command in your terminal (assuming you already have the non-pip installed libraries):

$ pip install dicom_wsi

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for dicom-wsi can be downloaded from the Github repo [https://github.com/Steven-N-Hart/dicom_wsi].

You can either clone the public repository:

$ git clone git://github.com/Steven-N-Hart/dicom_wsi

Or download the tarball [https://github.com/Steven-N-Hart/dicom_wsi/tarball/master]:

$ curl -OJL https://github.com/Steven-N-Hart/dicom_wsi/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

With Docker

You can also build a container using Docker:

$ docker build -t stevennhart/dicom_wsi .

Development with PyCharm

If you are going to do some development work with PyCharm, you will need to copy the binary files into your venv.

TL;DR

To use dicom-wsi in a project, you can run in one of two ways. You can run the command line program,

python cli.py -w <WSI File path> -o <OutputDirectory> -p <output file prefix> -y yaml/base.yaml

Or you can run it directly from python

import dicom_wsi
dicom_wsi.dicom_wsi.create_dicom(cfg, pools=n_pools)

The cfg is the dictionary of required entities, and n_pools defines the number of threads to use.

That’s it!

Getting Started

Before you can run dicom_wsi, you first need to gather some input data necessary for creating a valid DICOM file.
There are to ways to do this: 1.) Create a YAML file or 2.) Build a dictionary yourself.

Create a YAML file

The YAML file contains two sections: General and BaseAttributes. The General section contains a fixed number of required fields that are used by dicom_wsi, whereas the BaseAttributes are restricted key words from the DICOM [https://dicom.innolitics.com/ciods/vl-whole-slide-microscopy-image] standard. These are cross-referenced with the pydicom [https://github.com/pydicom/pydicom/blob/master/pydicom/_dicom_dict.py] dictionary.

General section

Definitions

	Term

	Definition

	WSIFile

	Path to whole slide image file

	OutFilePrefix

	What prefix to use when saving the DICOM output file

	NumberOfLevels

	How many levels should be extracted (in powers of 2)

	OrgUIDRoot

	Your organizations UID root prefix

	FrameSize

	How many pixels should be used for DICOM frames

	MaxFrames

	Number of frames allowed before writing to a new file

BaseAttributes section

Most of the terms in this section are defined in the DICOM [https://dicom.innolitics.com/ciods/vl-whole-slide-microscopy-image] standard. Many will not need to be changed, but some always will. Below, I highlight those terms that will likely need to be manually set.
Definitions

	Term

	Definition

	PatientName

	LastName^FirstName

	PatientBirthDate

	Date format (i.e. 20000101)

	PatientSex

	M: Male, F: Female, O: Other

	PatientID

	Unique identifier for the patient

	ReferringPhysicianName

	LastName^FirstName

	StudyDate

	Date format

	StudyID

	Human readable study name

A full example can be found in yaml/base.yaml.

Without a YAML file

While a YAML file is recommended, you don’t actually need one. You could choose
to make the dictionary yourself. The dictionary has two nested components, General and BaseAttributes,
each of which has the elements defined in yaml/base.yaml.

Using in existing code

To use dicom-wsi in a project:

from yaml import load, BaseLoader
import dicom_wsi
dwsi = dicom_wsi.dicom_wsi
get_wsi = dicom_wsi.parse_wsi.get_wsi

Define your YAML file
my_yaml = '/path/to/yaml'
Load your YAML file
cfg = load(open(my_yaml), Loader=BaseLoader)
Read the WSI, updating the config with information contained in the slide
cfg, wsi = get_wsi(cfg)
Create DICOM files
dwsi.create_dicom(cfg)

Sample RUN

This Step will download the sample svs file
python ./tests/__init__.py

This is sample execution
python cli.py -y ./tests/testfiles/base.yaml

Examples

Here is an end to end example

Clone the git repo

$ git clone https://github.com/Steven-N-Hart/dicom_wsi.git
 $ cd dicom_wsi
 $ mkdir example
 $ cd example

Install the required packages as described here

Downloading the svs file

$ wget http://openslide.cs.cmu.edu/download/openslide-testdata/Aperio/CMU-1-JP2K-33005.svs

getting the annotations file

$ cp ../tests/CMU-1-JP2K-33005.xml .

Getting the input yaml file to generate the dicom file.Modifying values for params ‘WSIFile’,’OutFilePrefix’,’Annotations’.

Annotations are optional, if you want to skip annotations, then remove ‘Annotations’ param in the base.yaml file
Below command will replace the paths for params ‘WSIFile’,’OutFilePrefix’,’Annotations’ to current directory

$ cat ../dicom_wsi/yaml/base.yaml |sed -e 's/tests\///g'|sed -e 's/.\///g' > base.yaml

Running the dicom_wsi tool & generating the dicom files

$ python ../dicom_wsi/cli.py -y base.yaml

Following dicom files will be generated (Multiple dicom files for multiple levels).

$ ls output.*.dcm

output.0-10.dcm

output.0-2.dcm

output.0-6.dcm

output.1-1.dcm

output.3-0.dcm

output.0-11.dcm

output.0-3.dcm

output.0-7.dcm

output.1-2.dcm

output.4-0.dcm

output.0-12.dcm

output.0-4.dcm

output.0-8.dcm

output.1-3.dcm

output.5-0.dcm

output.0-1.dcm

output.0-5.dcm

output.0-9.dcm

output.2-0.dcm

output.6-0.dcm

Optional: Validating the generated dicom files.

Download this tool dciodvfy [https://www.dclunie.com/dicom3tools/dciodvfy.html] to validate the generated dicom files

Other functions

Extracting Annotations from Dicom file to a python dictionary(Here i’m running it on only one level Dicom file)

$ python ../dicom_wsi/mods/extract_annotations.py -D output.2-0.dcm

Extracting images from Dicom file

$ python ../dicom_wsi/mods/extract_image_patches.py -D output.2-0.dcm -d output_images

Working with iSyntax files

I you are like me and are stuck with iSyntax files, then they first need to be converted to TIFF. The following script
will parse the isyntax file to make a config file and a BigTiff file.

First, change directories so you are in the isyntax directory of this repo , and download an example iSyntax file from
the Phillips Website [https://www.openpathology.philips.com/resources/].

$ cd isyntax
$ curl -o ex1.isyntax https://zenodo.org/record/5037046/files/testslide.isyntax?download=1

Next, get the Phillips SDK. You need to create a log in first.

You will need to follow the installation instructions for your specific operating system. Once you have it installed,
open a python terminal and run:

import pixelengine

If you get ModuleNotFoundError: No module named ‘pixelengine’ then you do not have this installed properly. Ask Phillips tech support for help.

> Note you need to ensure that you have the Phillips SDK installed and available. It is not possible for this toolkit

Once you have the Phillips SDK installed, you can run the conversion script.

$ python isyntax_to_tiff.py --input 1.isyntax --tif BIGTIFF --sparse 0 --startlevel 0

This will create a file called ex1_BIG_sparse.tiff.

Now you can create the configuration file and proceed as normal.

> Note: Since the isyntax_to_tiff.py is maintained by Phillips, its name or usage might change. Please consult the Phillips documentation.

Annotations

Given an XML file of annotations, extract the data into the appropriate DICOM element.

If you have Annotations in the XML file structure listed below, and you want to include them in
your DICOM file, then all you need to do is to add the Annotations key and the associated
file path to the General attribute in the YAML file.

	General:

	Annotations: ‘/path/to/xmlFile’

[image: Annotation]

Getting some sample XML data

We have prepared some different annotations on the Aperio [http://openslide.cs.cmu.edu/download/openslide-testdata/Aperio/] example CMU-1-JP2K-33005.svs.
These examples were drawn using QuPath [https://qupath.github.io/] and extracted with this [https://github.com/smujiang/WSITools/blob/695eb8854dd8f246b808c76d663fdcb7418aeb3b/wsitools/wsi_annotation/QuPath_scripts/export_anno_tcga_xml.groovy] script. The annotations
have no physiological relevance, only to show how the different data types can be
stored inside DICOM. Each of the yellow markups in the image above describe one of the following data types:

	Points

	Rectangle

	Area

	Ellipse

All of the data types should be encoded in an XML tree that looks like the following:

<Annotations>
 <Annotation>
 <Regions>
 <Region Text="null" GeoShape="Points">
 ...
 </Region>
 </Regions>
 </Annotation>
</Annotations>

The important characteristics here are Text=”null” and GeoShape=”Points”. These define a human readable label(Text),
and a data type (GeoShape). Each will be discussed below.

Points

The simplest annotation type is the point. It defines as specific x and y coordinate (pixel). Each entry in this group
represents an independent data point. If there are points that have different meanings (e.g. mitosis vs lymphocyte),
then they should be grouped in a different section with a different Text value.

<Region Id="1" Type="0" Text="null" GeoShape="Points" Zoom="0.042148" Selected="0" ImageLocation="" ImageFocus="0" Length="74565.8" Area="213363186.2" LengthMicrons="18798.0" AreaMicrons="13560170.4" NegativeROA="0" InputRegionId="0" Analyze="1" DisplayId="1">
 <Attributes/>
 <Vertices>
 <Vertex X="37279.312500" Y="4662.189453"/>
 <Vertex X="37319.550781" Y="4588.894043"/>
 <Vertex X="..." Y="..."/>
 </Vertices>
</Region>

Rectangle

The next simplest annotation is a rectangle, or bounding box. These annotations define an area that contains an object
of interest. They require four different points to describe the boundaries of the x and y corners.

<Region Id="2" Type="2" Text="Necrosis" GeoShape="Rectangle" Zoom="0.042148" Selected="0" ImageLocation="" ImageFocus="0" Length="74565.8" Area="213363186.2" LengthMicrons="18798.0" AreaMicrons="13560170.4" NegativeROA="0" InputRegionId="0" Analyze="1" DisplayId="1">
 <Attributes/>
 <Vertices>
 <Vertex X="36406.388563" Y="4324.243648"/>
 <Vertex X="36554.076020" Y="4324.243648"/>
 <Vertex X="36554.076020" Y="4452.625555"/>
 <Vertex X="36406.388563" Y="4452.625555"/>
 </Vertices>
</Region>

Area

An area annotations structured identically to the bounding box, except that there can be any number of x,y coordinate
pairs. This is the annotation typically used for image segmentation.

<Region Id="3" Type="1" Text="Fold" GeoShape="Area" Zoom="0.042148" Selected="0" ImageLocation="" ImageFocus="0" Length="74565.8" Area="213363186.2" LengthMicrons="18798.0" AreaMicrons="13560170.4" NegativeROA="0" InputRegionId="0" Analyze="1" DisplayId="1">
 <Attributes/>
 <Vertices>
 <Vertex X="36382.175781" Y="4644.585938"/>
 <Vertex X="36389.238281" Y="4651.647949"/>
 ...
 <Vertex X="36262.121094" Y="4573.966309"/>
 <Vertex X="36255.058594" Y="4573.966309"/>
 </Vertices>
</Region>

Ellipse

Ellipses are just circular annotations. They have the same structure as Rectangles, but rather than being connected by
straight lines in an image viewer, they will instead be connected with curved lines.

<Region Id="4" Type="0" Text="null" GeoShape="Ellipse" Zoom="0.042148" Selected="0" ImageLocation="" ImageFocus="0" Length="74565.8" Area="213363186.2" LengthMicrons="18798.0" AreaMicrons="13560170.4" NegativeROA="0" InputRegionId="0" Analyze="1" DisplayId="1">
 <Attributes/>
 <Vertices>
 <Vertex X="36943.806573" Y="2957.558623"/>
 <Vertex X="37011.368077" Y="3027.752393"/>
 <Vertex X="36943.806573" Y="3097.946164"/>
 <Vertex X="36876.245069" Y="3027.752393"/>
 </Vertices>
</Region>

Inserting into the DICOM file

This process assumes you have a pydicom [https://pydicom.github.io/pydicom/stable/] object called ds. Let’s go ahead and build out the base for our annotations.

from pydicom.sequence import Sequence
from pydicom.dataset import Dataset

ds = ... # Stuff to create DICOM file
dsDisplayedArea = Dataset()
dsDisplayedArea.PresentationSizeMode = 'TRUE SIZE'
ds.DisplayedAreaSelectionSequence = Sequence([dsDisplayedArea])
ds.GraphicAnnotationSequence = Sequence([])
ds.GraphicAnnotationSequence[0].ReferencedImageSequence = Sequence([])
ds.GraphicAnnotationSequence[0].ReferencedImageSequence[0].GraphicObjectSequence = Sequence([])

Determine what type of annotation element is needed:

	Rectangle

Graphics on the first referenced image
GraphicObjectSequence = Dataset()
GraphicObjectSequence.BoundingBoxTopLeftHandCorner = [36406.388563, 4452.625555]
GraphicObjectSequence.BoundingBoxBottomRightHandCorner = [36554.076020, 4324.243648] # bottom right coordinates of bounding box [max_x, min_y]
GraphicObjectSequence.BoundingBoxAnnotationUnits = 'PIXEL' # unit of coordinates
GraphicObjectSequence.BoundingBoxHorizontalJustification = 'LEFT'
GraphicObjectSequence.UnformattedTextValue = 'Necrosis' # Text="Necrosis"
GraphicObjectSequence.GraphicGroupID = '2' # Id="2"
gos = Sequence([GraphicObjectSequence])
ds.GraphicAnnotationSequence[0].ReferencedImageSequence[0].GraphicObjectSequence.append(gos)
del GraphicObjectSequence
del gos

	Points

GraphicObjectSequence = Dataset()
GraphicObjectSequence.GraphicType = "POINT"
GraphicObjectSequence.NumberofGraphicPoints = 4 # how many points where saved in this domain, validate data is complete
GraphicObjectSequence.GraphicData = [37279.312500, 4662.189453, 37319.550781, 4588.894043, ..., ...] # x,y coordinates of points [x0, y0, x1, y1]
GraphicObjectSequence.GraphicAnnotationUnits = 'PIXEL' # unit of coordinates
GraphicObjectSequence.GraphicGroupID = '1' # Id="1" Type="0" Text="null"
gos = Sequence([GraphicObjectSequence])
ds.GraphicAnnotationSequence[0].ReferencedImageSequence[0].GraphicObjectSequence.append(gos)
del GraphicObjectSequence
del gos

	Area

GraphicObjectSequence = Dataset()
GraphicObjectSequence.GraphicType = "POLYLINE" # add polyline
GraphicObjectSequence.NumberofGraphicPoints = 4 # how many points where saved in this domain
GraphicObjectSequence.GraphicData = [36382.175781, 4644.585938, 36389.238281, 4651.647949, ..., ...]
GraphicObjectSequence.GraphicAnnotationUnits = 'PIXEL' # unit of coordinates
GraphicObjectSequence.GraphicGroupID = 3 # Annotation Label ID: 2
gos = Sequence([GraphicObjectSequence])
ds.GraphicAnnotationSequence[0].ReferencedImageSequence[0].GraphicObjectSequence.append(gos)
del GraphicObjectSequence
del gos

	Ellipse

GraphicObjectSequence = Dataset()
GraphicObjectSequence.GraphicType = "ELLIPSE"
GraphicObjectSequence.NumberofGraphicPoints = 4 # how many points where saved in this domain
GraphicObjectSequence.GraphicData = [36943.806573, 2957.558623, 37011.368077, 3027.752393, 36943.806573, 3097.946164, 36876.245069, 3027.752393]
GraphicObjectSequence.GraphicAnnotationUnits = 'PIXEL' # unit of coordinates
GraphicObjectSequence.GraphicGroupID = 3 # Annotation Label ID: 2
gos = Sequence([GraphicObjectSequence])
ds.GraphicAnnotationSequence[0].ReferencedImageSequence[0].GraphicObjectSequence.append(gos)
del GraphicObjectSequence
del gos

Extracting Annotations & Images from DICOM Files

Extract Annotations from DICOM

The following script will parse the DICOM file to extract annotations and returns the annotations
in a python dictionary object.

$ python dicom_wsi/extract_annotations.py -D <Path to DICOM file>

or from inside a python script:

from dicom_wsi.extract_annotations import extract_ann_dicom
d = extract_ann_dicom('tests/output.6-0.dcm') # Change this to your dicom file

Extract Images from Dicom

The following script will parse the DICOM file to extract images and write them
to a specified directory.

$ python ./dicom_wsi/extract_image_patches.py -D <Path to Dicom file> -d <Path to output directory>

Code

Base Attributes

Character Validation

Input Validation

Mapping Functions

Whole Slide Image Parsing

Down-sampling the WSI

Converting Pixels to Positions

Adding in Sequence Data

Adding Functional Groups Data

Other helper utilities

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/Steven-N-Hart/dicom_wsi/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

dicom-wsi could always use more documentation, whether as part of the
official dicom-wsi docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Steven-N-Hart/dicom_wsi/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dicom_wsi for local development.

	Fork the dicom_wsi repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/dicom_wsi.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv dicom_wsi
$ cd dicom_wsi/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 dicom_wsi tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.5, 3.6 and 3.7, and for PyPy. Check
https://travis-ci.org/Steven-N-Hart/dicom_wsi/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_dicom_wsi

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Steven N. Hart, Ph.D. https://github.com/Steven-N-Hart

Contributors

	Jin Jiang, Ph.D. https://github.com/smujiang

History

0.1.0 (2021-1-22)

	First release on PyPI.

Index

	LibVIPS

	OSError: cannot load library ‘libvips-42.dll’: error 0x7e. Additionally, ctypes.util.find_library() did not manage to locate a library called ‘libvips-42.dll

	
	Make sure this file is in your PATH. If you have to, try:

vipshome = ‘D:\Downloads\vips-dev-w64-all-8.8.3\vips-dev-8.8\bin’
set PATH
import os
os.environ[‘PATH’] = vipshome + ‘;’ + os.environ[‘PATH’]
and now pyvips will pick up the DLLs in the vips area
import pyvips

TL;DR

To use dicom-wsi in a project:

from yaml import load, BaseLoader
from dicom_wsi import create_dicom
from parse_wsi import get_wsi

Define your YAML file
my_yaml = '/path/to/yaml'
Load your YAML file
cfg = load(open(my_yaml), Loader=BaseLoader)
Read the WSI, updating the config with information contained in the slide
cfg, wsi = get_wsi(cfg)
Create DICOM files
create_dicom(cfg)

That’s it!

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/annotation.jpg

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to dicom-wsi’s documentation!

 		
 dicom_wsi

 		
 Usage

 		
 Features

 		
 TODO

 		
 Credits

 		
 Installation

 		
 With Conda (Preferred)

 		
 Stable release

 		
 From sources

 		
 With Docker

 		
 Development with PyCharm

 		
 TL;DR

 		
 Getting Started

 		
 Create a YAML file

 		
 General section

 		
 BaseAttributes section

 		
 Without a YAML file

 		
 Using in existing code

 		
 Sample RUN

 		
 Examples

 		
 Other functions

 		
 Working with iSyntax files

 		
 Annotations

 		
 Getting some sample XML data

 		
 Points

 		
 Rectangle

 		
 Area

 		
 Ellipse

 		
 Inserting into the DICOM file

 		
 Extracting Annotations & Images from DICOM Files

 		
 Extract Annotations from DICOM

 		
 Extract Images from Dicom

 		
 Code

 		
 Base Attributes

 		
 Character Validation

 		
 Input Validation

 		
 Mapping Functions

 		
 Whole Slide Image Parsing

 		
 Down-sampling the WSI

 		
 Converting Pixels to Positions

 		
 Adding in Sequence Data

 		
 Adding Functional Groups Data

 		
 Other helper utilities

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2021-1-22)

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

